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The nonlinear sigma model in one-space one-time dimension is considered on the light-
front. The front-form theory is seen to possess a set of three first-class constraints and
consequently it possesses a local vector gauge symmetry. This is in contrast to the usual
instant-form theory, which is well known to be a gauge noninvariant theory possessing
a set of four second-class constraints. The front-form Hamiltonian, path integral, and
BRST formulations of this theory are investigated under some specific gauge choices.
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1. INTRODUCTION

The O(N) nonlinear sigma models (NLSM) in one-space one-time
((1+1)-) dimension (Callenet al., 1969; Candelaset al., 1985; Colemanet al.,
1969; Henneaux and Mezincescu, 1985; Kulshreshthaet al., 1993a; Maharana,
1983a,b; Mitra and Rajaraman, 1990a,b; Ruehl, 1991a,b, 1993, 1995, 1996;
Zamolodchikov and Zamolodchikov, 1979), where the field sigma is a real
N-component field, provide a laboratory for the various nonperturbative tech-
niques, e.g., 1/N-expansion (Ruehl, 1991a,b, 1993, 1995, 1996), operator product
expansion, and the low energy theorems (Callenet al., 1969; Colemanet al., 1969).
These models are characterized by features like renormalization and asymptotic
freedom common with that of quantum chromodynamics and exhibit a nonper-
turbative particle spectrum, have no intrinsic scale parameter, possess topolog-
ical charges, and are very crucial in the context of conformal (Ruehl, 1991a,b,
1993, 1995, 1996) and string field theories (Candelaset al., 1985; Henneaux and
Mezincescu, 1985;) where they appear in the classical limit (Callenet al., 1969;
Colemanet al., 1969).
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The Hamiltonian formulation of the gauge-noninvariant (GNI) O(N)-NLSM
in (1+1)-dimension has been studied in Maharana (1983a) and its two gauge-
invariant (GI) versions have been constructed in Kulshreshthaet al. (1993a),
where the Hamiltonian (Dirac, 1950, 1964) and Becchi–Rouet–Stora and Tyutin
(BRST) (Becchiet al., 1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998;
Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al., 1993b, 1994a,b,c, 1995,
1999; Nemeschanskyet al., 1998; Tyutini, 1975) quantization of these GI models
have also been studied in detail. In the present work, we propose to investigate the
canonical structure, constrained dynamics, and Hamiltonian (Dirac, 1950, 1964),
path integral, and BRST (Becchiet al., 1974; Henneaux and Teitelboim, 1992;
Kulshreshtha, 1998;Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al.,
1993b, 1994a,b,c, 1995, 1999; Nemeschanskyet al., 1998; Tyutini, 1975) for-
mulations of this model on the light-front (LF), i.e., on the hyperplanes: light-
cone (LC) timex+ ≡ t = (x0+ x1)/

√
2= constant (Dirac, 1949; for a recent

review see, e.g., Brodskyet al. 1998). The Hamiltonian and BRST formulations
of this NLSM in the usual instant form (IF) of dynamics (on the hyperplanes
x0 = constant) (Dirac, 1949; for a recent review see, e.g., Brodskyet al., 1998)
have been investigated in Kulshreshthaet al.(1993). The IF theory (Kulshreshtha
et al.1993a) is well known to be a GNI theory possessing a set of four second-class
constraints (Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b; Kulshreshtha
et al., 1993a). On the other hand, the front-form (FF) theory under the present in-
vestigation is seen to possess a set of three first-class constraints, and consequently
it describes a GI theory. The FF Hamiltonian and path integral formulation of this
model has been investigated under some specific gauges in the present work.

Also, because the LF coordinates are not related to the conventional IF coor-
dinates by a finite Lorentz transformation, the descriptions of the same physical
result may be different in the IF and the FF. In fact, the quantization of relativistic
field theories at fixed LC time proposed by Dirac (1989; for a recent review see,
e.g., Brodskyet al., 1998) has very important applications and the LF variables are
very useful not only in field theories but also in the description of string theories and
D-brane physics. In the LC quantization (LCQ) of gauge theories the transverse
degrees of freedom of the gauge field can be imediately identified as the dynamical
degrees of freedom, and as a result, the LCQ remains very economical in display-
ing the relevant degrees of freedom leading directly to the physical Hilbert space.
In the context of LCQ of two-dimensional field theories, it is very often found that
a theory that is gauge anomalous in the IF is no longer gauge anomalous (and there-
fore gauge invariant) in the FF/LCQ, as seen in the present case of NLSM. Also, in
the LCQ, there is usually no conflict with the microcausality, which is in contrast
with the usual IF quantization. Also, the FF has seven kinematical Poincare gen-
erators including the Lorentz boost transformations compared to only six in the
usual IF framework. The advantage of the FF/LCQ over that of the conventional
IF quantization is best illustrated in a recent review (Brodskyet al., 1998).
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However, in the usual Hamiltonian formulation of a GI theory under some
gauge-fixing conditions, one necessarily destroys the gauge invariance of the the-
ory by fixing the gauge (which converts a set of first-class constraints into a set
of second-class constraints, implying a breaking of gauge invariance under gauge
fixing). To achieve the quantization of a GI theory such that the gauge invariance
of the theory is maintained even under gauge fixing, one goes to a more gen-
eralized procedure called the BRST formulation (Becchiet al., 1974; Henneaux
and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshthaet al., 1993b, 1994a,b,c, 1995, 1999; Nemeschanskyet al., 1998;
Tyutini, 1975). In the BRST formulation of a GI theory, the theory is rewritten as
a quantum system that possesses a generalized gauge invariance called the BRST
symmetry. For this, one enlarges the Hilbert space of the GI theory and replaces the
notion of the gauge transformation, which shifts operators byc-number functions,
by a BRST transformation, which mixes the operators having different statistics.
In view of this, one introduces new anticommuting variablesc and c̄ called the
Faddeev–Popov ghost and antighost fields, which are Grassmann numbers on the
classical level and operators in the quantized theory, and a commuting variableb
called the Nakanishi–Lautrup field (Becchiet al., 1974; Henneaux and Teitelboim,
1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshtha
et al., 1993b, 1994a,b,c, 1995, 1999; Nemeschanskyet al., 1998; Tyutini, 1975).

In the BRST formulation of a theory one thus embeds a GI theory into a BRST-
invariant system, and the quantum Hamiltonian of the system (which includes the
gauge-fixing contribution) commutes with the BRST charge operatorQ as well
as with the anti-BRST charge operatorQ̄. The new symmetry of the system (the
BRST symmetry) that replaces the gauge invariance is maintained (even under
gauge fixing) and hence projecting any state onto the sector of BRST and anti-
BRST invariant states yields a theory that is isomorphic to the original GI theory.
The unitarity and consistency of the BRST-invariant theory described by the gauge-
fixed quantum Lagrangian is guaranteed by the conservation and nilpotency of the
BRST chargeQ.

In the next section, we briefly consider the basics of the O(N)-NLSM
(Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b),
in the IF of dynamics (Kulshreshthaet al., 1993a). In Section 3, we study the
Hamiltonian and path integral formulations of this model on the LF under gauge
fixing and in Section 4, its BRST formulation under some specific LC gauges. The
summary and discussions are finally given in Section 5.

2. THE INSTANT-FORM THEORY

The O(N)-NLSM in one-space one-time dimension in the usual IF (i.e., on
the hyperplanesx0= constant) is described by the action (Callenet al., 1969;
Candelaset al., 1985; Colemanet al., 1969; Henneaux and Mezincescu, 1985;
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Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b;
Ruehl, 1991a,b, 1993, 1995, 1996; Zamolodchikov and Zamolodchikov, 1979):

S =
∫

L N dx dt (2.1a)

L N =
[

1

2
∂µσk∂

µσk + λ
(
σ 2

k − 1
)]

k= 1, 2,. . . , N (2.1b)

=
[

1

2

(
σ̇ 2

k − σ ′2k

)+ λ(σ 2
k − 1

)]
k= 1, 2,. . . , N (2.1c)

gµν := diag(+1,−1) (2.1d)

HereEσ ≡ [σk(x, t); k = 1, 2,. . . , N] is a multiplet ofN real scalar fields in (1+1)-
dimension andλ(x, t) is another scalar field. The overdots and primes denote the
time and space derivatives respectively. The fieldEσ (x, t) maps the two-dimensional
space-time into theN-dimensional internal manifold whose coordinates areσk(x,
t). In the above equation, the first term corresponds to a massless boson (which is
equivalent to a massless fermion), and the second term is the usual term involv-
ing the nonlinear constraint (σ 2

k − 1≈ 0) and the auxiliary fieldλ. This model is
seen to possess a set of four second-class constraints (Kulshreshthaet al., 1993a;
Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b):

ρ1 = pλ ≈ 0 (2.2a)

ρ2 =
[
σ 2

k − 1
] ≈ 0 (2.2b)

ρ3 = 2σk5k ≈ 0 (2.2c)

ρ4 =
(
252

k + 4λ σ 2
k + 2σk σ

′′
k

) ≈ 0 (2.2d)

whereρ1 is a primary constraint andρ2, ρ3, andρ4 are secondary constraints.
Here5k and pλ are the momenta canonically conjugate respectively toσk and
λ. The nonvanishing equal-time Dirac brackets (DBs) of the theory are given by
(Kulshreshthaet al., 1993a; Maharana, 1983; Mitra and Rajaraman, 1990a,b).

{5`(x),5m(y)}D = −1

2
[σ`(x)5m(y)−5`(x)σm(y)] δ(x − y) (2.3a)

{σ`(x),5m(y)}D =
[
δ`m − σ`(x)σm(y)

σ 2
k

]
δ(x − y) (2.3b)

For achieving the canonical quantization of the theory, one encounters the problem
of operator ordering while going from DBs to the commutation relations. This
problem could, however, be resolved as explained in Maharana (1983a,b) and
Kulshreshthaet al.(1993a) by demanding that all the fields and field momenta after
quantization become hermition operators and that all the canonical commutation
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relations be consistent with the hermiticity of these operators (Kulshreshthaet al.,
1993a; Maharana, 1983a,b).

3. THE LIGHT-FRONT THEORY

In order to study the theory on the LF (i.e., on the hyperplanesx+ = (x0+
x1)/
√

2= constant) one defines the LC coordinatesx± := [(x0± x1)/
√

2] and
then writes all the quantities involved in the action in terms ofx± instead ofx0 and
x1 (Dirac, 1949; for a recent review see. e.g., Brodskyet al., 1998). The action of
the theory on the LF thus reads

S=
∫

L dx+ dx− (3.1a)

L = [(∂+σk)(∂−σk)+ λ(σ 2
k − 1

)]
(3.1b)

∂±σk =
( ◦
σ k ± σ ′k

)
/
√

2 (3.1c)

As before, in (3.1b), the first term corresponds to a massless boson (which is equiv-
alent to a massless fermion), and the second term is the usual term involving the
nonlinear constraint [(σ 2

k − 1)≈ 0] and the auxiliary fieldλ. The Euler–Lagrange
equations obtained fromL (3.1) are

[∂+∂−σk − λ σk] = 0 (3.2a)[
σ 2

k − 1
] = 0 (3.2b)

3.1. The FF Hamiltonian and Path Integral Formulations

The LC canonical momenta for the above NLSM obtained fromL (3.1) are

5k := ∂L

∂(∂+σk)
= [∂−σk] (3.3a)

ρλ := ∂L

∂(∂+λ)
= 0 (3.3b)

Here,5k andpλ are the momenta canonically conjugate respectively toσk andλ.
Also the above equations imply that the theory possesses two primary constraints:

χ1 = pλ ≈ 0 (3.4a)

χ2 = [5k − ∂−σk] ≈ 0 (3.4b)

The canonical Hamiltonian density corresponding toL is

H C = [5k(∂+σk)+ pλ(∂+λ)− L ] = [−λ(σ 2
k − 1

)]
(3.5)
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After including the primary constraintsχ1 andχ2 in the canonical Hamiltonian
densityH C with the help of Lagrange multipliersu andv, one can write the total
Hamiltonian densityH T as

H T =
[−λ(σ 2

k − 1
)+ pλu+ (5k − ∂−σk

)
v·
]

(3.6)

The Hamiltons equations obtained from the total HamiltonianHT =
∫

H T dx−

are

∂+σk = ∂HT

∂5k
= v (3.7a)

−∂+5k = ∂HT

∂σk
= [−2λ σk + ∂−v] (3.7b)

∂+λ = ∂HT

∂pλ
= u (3.7c)

−∂+pλ = ∂HT

∂λ
= [−(σ 2

k − 1
)]

(3.7d)

∂+u = ∂HT

∂5u
= 0 (3.7e)

−∂+5u = ∂HT

∂u
= pλ (3.7f)

∂+v = ∂HT

∂5v
= 0 (3.7g)

−∂+5v = ∂HT

∂v
= [5k − ∂−σk] (3.7h)

These are the equations of motion that preserve the constraints of the theoryχ1

andχ2 in the course of time. For the equal LC time (x+ = y+) Poisson bracket{,}p
of two functionsA andB, we choose the convention

{A(x), B(y)}p :=
∫

dz−
∑
α

[
∂A(x)

∂qα(z)

∂B(y)

∂pα(z)
− ∂A(x)

∂pα(z)

∂B(y)

∂qα(z)

]
(3.8)

demanding that primary constraintχ1 be preserved in the course of time, and we
obtain the secondary Gauss law constraint of the theory as

χ3 := {χ1, H T}p =
[
σ 2

k − 1
] ≈ 0. (3.9)

Now the preservation ofχ2 andχ3 for all time does not give rise to any fur-
ther constraints. The theory is thus seen to possess a set of three constraintsχi

(i = 1, 2, 3):

χ1 = pλ ≈ 0 (3.10a)
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χ2 = [5k − ∂−σk] ≈ 0 (3.10b)

χ3 =
[
σ 2

k − 1
] ≈ 0 (3.10c)

The matrix of the Poisson brackets of the constraintsχ1, namely,Sαβ(w−, z−) :=
{χα(w−), χβ(z−)}p, is then calculated. The nonvanishing matrix elements of the
matrix Sαβ(w−, z−) (with the arguments of the field variables being suppressed)
are

S22 = [−2∂− δ(w− − z−)] (3.11a)

S23 = −S32 = [−2σk δ(w
− − z−)] (3.11b)

The inverse of the matrixSαβ does not exist and therefore the matrix is singular,
implying that the set of constraintsχi is first-class and that the theory is a GI theory
(Mitra and Rajaraman, 1990a,b). In fact, the action of theory is seen to be invariant
under the local vector gauge transformation (LVGT)

δ σk = β δ5k = ∂−β δv = δ+β (3.12a)

δλ = δu = δpλ = δ5u = δ5v = 0 (3.12b)

whereβ ≡ β(x−, x+) is an arbitrary function of its arguments.
The generator of the above LVGT is the charge operator of the theory

J+ =
∫

j+ dx− =
∫

dx−[β(∂−σk)] (3.13)

The current operator of the theory is

J− =
∫

j− dx− =
∫

dx−[β(∂+σk)] (3.14)

The divergence of the vector-current density, namely,∂µ j µ (=∂+ j+ + ∂− j−), is
therefore seen to vanish. This implies that the theory possesses at the classical level,
a local vector gauge symmetry. We now proceed to quantize the theory under the
gauge

G = λ = 0 (3.15)

Under this gauge, the total set of constraints of the theory becomes

ψ1 = χ1 = pλ ≈ 0 (3.16a)

ψ2 = χ2 = [5k − ∂−σk] ≈ 0 (3.16b)

ψ3 = χ3 =
[
σ 2

k − 1
] ≈ 0 (3.16c)

ψ4 = G = λ = 0 (3.16d)

The matrix of the Poisson brackets of the constraintsψi , namely,Tαβ(w, z) :=
{ψα(w), ψβ(z)}p, is then calculated. The nonvanishing matrix elements of the
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matrix Tαβ (w, z) (with the arguments of the field variables being suppressed
again) are

T14 = −T41 = −δ(w− − z−) (3.17a)

T22 = −2∂−δ(w− − z−) (3.17b)

T23 = −T32 = −2σk δ(w
− − z−) (3.17c)

The inverse of the matrixTαβ exists and the matrix is nonsingular. The nonvanishing
elements of the inverse of the matrixTαβ , i.e., the elements of the matrix (T−1)αβ
(with the arguments of the field variables being suppressed once again), are

(T−1)14 = −(T−1)41 = δ(w− − z−) (3.18a)

(T−1)23 = −(T−1)32 =
[

1

2σk

]
δ(w− − z−) (3.18b)

(T−1)33 =
[

1

2σ 2
k

]
∂−δ(w− − z−) (3.18c)

with ∫
dz− T(x−, z−) T−1(z−, y−) = 14×4 δ(x

− − y−) (3.19)

and

[‖ det(Tαβ)‖]1/2 = 2σk δ(w
− − z−) (3.20)

Now following the Dirac quantization procedure in the Hamiltonian formu-
lation, one finds that there do not exist any nonvanishing equal LC time commu-
tators for this theory under the gaugeλ= 0. The same is seen to hold true for
the quantization of the theory under some other gauge-fixing conditions such as
(λ− σk)= 0, (λ−5k) = 0, and (λ− σk −5k) = 0. This is an interesting result
to be noted here and its consequences need to be studied further involving the
methods of constraint quantization. The path integral quantization of this theory
is, however, possible as usual under all the above gauge-fixing conditions. In the
following, we illustrate the path integral quantization of this theory under the gauge
λ= 0, as an example. Also, for later use (in the next section), for considering the
BRST formulation of our GI theory, we convert the total Hamiltonian densityH T
into the first-order Lagrangian density

L IO := [5k(∂+σk)+ pλ(∂+λ)+5u(∂+u)+5v(∂+v)−H T] (3.21a)

= [
λ
(
σ 2

k − 1
)+ (∂−σk)(∂+σk)+5u(∂+u)+5v(∂+v)

]
(3.21b)

In the above equation the termspλ(∂+λ− u) and5k(∂+σk − v) drop out in view
of the Hamiltons equations of the theory.
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The transition to quantum theory in the path integral formulation is made
by writing the vacuum-to-vacuum transition amplitude called the generating func-
tionalz[ Ji ] in the presence of external source currentsJi under the gaugeζ = λ≈ 0
as (Henneaux and Teitelboim, 1992; Nemeschanskyet al., 1988)

Z[ Ji ] =
∫

[dµ] exp

[
i
∫

dx+ dx−
[
Jiφ

1+ λ(σ 2
k − 1

)
+ (∂−σk)(∂+σk)+5u(∂+u)+5v(∂+v)

]
(3.22a)

whereφi are the phase space variables

φi ≡ (σk, λ, u, v) (3.22b)

and the functional measure [dµ] for the above generating functional is

[dµ] = [2, σkδ(x
− − y−)][dσk][d5k][dλ][dpλ][du]

[d5u][dv][d5v]δ[( pλ)] ≈ 0]δ[(5k − ∂−σk) ≈ 0]

δ
[(
σ 2

k − 1
) ≈ 0

]
δ[(λ) ≈ 0] (3.22c)

4. THE BRST FORMULATION

We now rewrite our GNLSM which is GI as a quantum system that possesses
the generalized gauge invariance called BRST symmetry. For this, we first enlarge
the Hilbert space of our GI GNLSM and replace the notion of gauge transformation,
which shifts operators byc-number functions, by a BRST transformation, which
mixes operators with Bose and Fermi statistics. We then introduce new anticom-
muting variablesc andc̄ (Grassmann numbers on the classical level, operators in
the quantized theory) and a commuting variableb (called the Nakamishi–Lautrup
field) such that (Becchiet al., 1974; Henneaux and Teitelboim, 1992; Kulshreshtha,
1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al., 1993b, 1994a,b,c,
1995, 1999; Nemeschanskyet al., 1998; Tyutini, 1975):

δ̂σk = c δ̂5k = ∂−c δ̂v = ∂+c (4.1a)

δ̂λ = δ̂u = δ̂5u = δ̂5v = δ̂pλ = 0 (4.1b)

δ̂c = 0 δ̂c̄ = b δ̂b = 0 (4.1c)

with the propertŷδ2 = 0. We now define a BRST-invariant function of the dynam-
ical variables to be a functionf (5k, pλ,5u,5v, pb,5c,5c̄, σk, λ, u, v, b, c, c̄)
such that̂δ f = 0.



P1: IBB

International Journal of Theoretical Physics [ijtp] pp647-ijtp-453628 November 1, 2002 21:12 Style file version May 30th, 2002

1950 Kulshreshtha and Kulshreshtha

4.1. Gauge Fixing in the BRST Formulism

Permorming gauge fixing in the BRST formalism implies adding to the first-
order Lagrangian densityL IO, a trivial BRST-invariant function (Becchiet al.,
1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshthaet al., 1993b, 1994a,b,c, 1995, 1999;
Nemeschanskyet al., 1998; Tyutini, 1975). We thus write

L BRST=
[
λ
(
σ 2

k − 1
)+ (∂−σk)(∂+σk)+5u(∂+u)+5v(∂+v)

+ δ̂
[
c̄(∂̇+∂+σk + ∂+λ− 1

2
b

]
(4.2)

The last term in the above equation is the extra BRST-invariant gauge-fixing term.
After one integration by parts, the above equation can now be written as

L BRST=
[
λ
(
σ 2

k − 1
)+ (∂−σk)(∂+σk)+5u(∂+u)+5v(∂+v)

+ b(∂+∂+σk + ∂+λ)− 1

2
b2+ (∂+c̄)(∂+c)

]
(4.3)

Proceeding classically, the Euler–Lagrange equation forb reads

−b = [∂+∂+σk + ∂+λ] (4.4)

The requirement̂δb = 0 then implies

−δ̂b = [δ̂ ∂+∂+σk + δ̂∂+λ] (4.5)

which in turn implies

∂+∂+c = 0 (4.6)

The above equation is also an Euler–Lagrange equation obtained by the variation of
L BRST with respect tōc. In introducing momenta one has to be careful in defining
those for the fermionic variables. We thus define the bosonic momenta in the usual
manner so that

pλ := ∂

∂(∂+λ)
L BRST= b (4.7)

but for the fermionic momenta with directional derivatives we set

5c = L BRST

←
∂

∂(∂+c)
= (∂+c̄) 5c̄ =

→
∂

∂(∂+c̄)
L BRST= (∂+c) (4.8)

implying that the variable canonically conjugate toc is (∂+c̄) and the variable
conjugate tōc is (∂+c). For writing the Hamiltonian density from the Lagrangian
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density in the usual manner we remember that the former has to be Hermitian so
that

HBRST= [5k(∂+σk)+ pλ(∂+λ)+5u(∂+u)+5v(∂+v)

+5c(∂+c)+ (∂+c̄)5c̄ − L BRST] (4.9a)

=
[
− pλ(∂+∂+σk − ∂+λ)− 1

2
(pλ)2− λ(σ 2

k − 1
)+5c5c̄

]
(4.9b)

We can check the consistency of (4.8) and (4.9) by looking at Hamilton’s equations
for the fermionic variables, i.e.,

∂+c =
→
∂

∂5c
HBRST ∂+c̄ =HBRST

←
∂

∂5c̄
(4.10)

Thus we see that

∂+c =
→
∂

∂5c
HBRST= 5c̄ ∂+c̄ =HBRST

←
∂

∂5c̄
= 5c (4.11)

is in agreement with (4.8). For the operatorsc, c̄, ∂+c and∂+c̄, one needs to satisfy
the anticommutation relations of∂+c with c̄ or of ∂+c̄ with c, but not ofc with c̄.
In general,c andc̄ are independent canonical variables and one assumes that

{5c,5c̄} = {c̄, c} = 0 ∂+{c̄, c} = 0 (4.12a)

{∂+c̄, c} = (−1){∂+c, c̄} (4.12b)

where {,} means an anticommutator. We thus see that the anticommulators in
(4.12b) are nontrivial and need to be fixed. In order to fix these, we demand that
c satisfy the Heisenberg equation (Becchiet al., 1974; Henneaux and Teitelboim,
1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshtha
et al., 1993b, 1994a,b,c, 1995, 1999; Nemeschanskyet al., 1998; Tyutini, 1975):

[c, H BRST] = i ∂+c (4.13)

and using the propertyc2= c−2= 0 one obtains

[c, H BRST] = {∂+c̄, c}∂+c (4.14)

Equations (4.12)–(4.14) then imply

{∂+c̄, c} = (−1){∂+c, c̄} = i (4.15)

Here the minus sign in the above equation is nontrivial and implies the existence
of states with negative norm in the space of state vectors of the theory (Becchi
et al., 1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha
and Kulshreshtha, 1998; Kulshreshthaet al., 1993b, 1994a,b,c, 1995, 1999;
Nemeschanskyet al., 1998; Tyutini, 1975).
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4.2. The BRST Charge Operator

The BRST charge operatorQ is the generator of the BRST transformations
(4.1). It is nilpotent and satisfiesQ2 = 0. It mixes operators that satisfy Bose
and fermi statistics. According to its conventional definition, its commutators with
Bose operators and its anticommutators with Fermi operators for the present theory
satisfy

[σk, Q] = ∂+c [5k, Q]

= [2cσk − ∂−∂+c] [λ, Q] = ∂+c (4.16a)

{c̄, Q} = [−∂−σk + pλ +5k] {∂+c̄, Q} = (−1)
[
σ 2

k − 1
]

(4.16b)

All other commutators and anticommutators involvingQ vanish. In view of (4.16),
the BRST charge operator of the present theory can be written as

Q =
∫

dx−
[
ic
[
σ 2

k − 1
]− i (∂+c)[ pλ +5− ∂−σk]

]
(4.17)

This equation implies that the set of states satisfying the conditions

pλ|ψ〉 = 0 (4.18a)

[5k − ∂−σk]|ψ〉 = 0 (4.18b)[
σ 2

k − 1
]|ψ〉 = 0 (4.18c)

belongs to the dynamically stable subspace of states|ψ〉 satisfyingQ|ψ〉 = 0, i.e.,
it belong to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical states
of the theory we rewrite the operatorscandc̄ in terms of fermionic annihilation and
creation operators. For this purpose we consider (4.6). The solution of this equation
gives (for the LC timex+ ≡ t) the Heisenberg operatorc(t) (and correspondingly
c̄(t)) as

c(t) = Gt + F c̄(t) = G†t + F† (4.19)

which at timet = 0 imply

c ≡ c(0)= F c̄ ≡ c̄(0)= F† (4.20a)

∂+c ≡ ∂+c(0)= G ∂+c̄ ≡ ∂+c̄(0)= G† (4.20b)

By imposing the conditions

c2 = c−2 = {c̄, c} = {∂+c̄, ∂+c} = 0 (4.21a)

{∂+c̄, c} = i = −{∂+c, c̄} (4.21b)
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we then obtain

F2 = F†2 = {F†, F} = {G†, G} = 0 (4.22a)

{G†, F} = i {G, F†} = −i (4.22b)

We now let|0〉 denote the fermionic vacuum for which

G|0〉 = F |0〉 = 0 (4.23)

Defining|0〉 to have norm one, (4.22b) implies

〈0|FG†|0〉 = i 〈0|GF†|0〉 = −i (4.24)

so that

G†|0〉 6= 0 F†|0〉 6= 0 (4.25)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
HBRST is however irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators

HBRST=
[
−pλ(∂+∂+σk − ∂+λ)− 1

2
(pλ)

2− λ(σ 2
k − 1

)+ G†G

]
(4.26)

and the BRST charge operatorQ is

Q =
∫

dx−
[
i F
(
σ 2

k − 1
)− iG(pλ +5k − ∂−σk)

]
(4.27)

Now becauseQ|ψ〉 = 0, the set of states annihilated byQ contains not only the
set of states for which (4.18) hold but also additional states for which

B|ψ〉 = D|ψ〉 = 0 (4.28a)

pλ|ψ〉 6= 0 (4.28b)

[5k − ∂−σk]|ψ〉 6= 0 (4.28c)[
σ 2

k − 1
]|ψ〉 6= 0 (4.28d)

The Hamiltonian is also invariant under the anti-BRST transformation given by

¯̂δσk = −c̄ ¯̂δ5k = −∂−c̄ ¯̂δv = −∂+c̄ (4.29a)

¯̂δλ = ¯̂δu = ¯̂δpλ = ¯̂δ5u = ¯̂δ5v = 0 (4.29b)

¯̂δc̄ = ¯̂δc = −b ¯̂δb = 0 (4.29c)
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with the generator or anti-BRST charge

Q̄ =
∫

dx−
[−i c̄

[
σ 2

k − 1
]+ i (∂+c̄)[ pλ +5k − ∂−σk]

]
(4.30a)

=
∫

dx−
[−i F †

(
σ 2

k − 1
)+ iG†(pλ +5k − ∂−σk)

]
(4.30b)

We also have

∂+Q = [Q, HBRST] = 0 (4.31a)

∂+ Q̄ = [ Q̄, HBRST] = 0 (4.31b)

with

HBRST=
∫

dx HBRST (4.31c)

and we further impose the dual condition that bothQ and Q̄ annihilate physical
states, implying that

Q|ψ〉 = 0 and Q̄|ψ〉 = 0 (4.32)

The states for which (4.18) hold, satisfy both of these conditions and, in fact, are
the only states satisfying both of these conditions, since, although with (4.22)

G†G = −GG† (4.33)

there are no states of this operator withG†|0〉 = 0 andF†|0〉 = 0 [cf. (4.25)], and
hence no free eigenstates of the fermionic part ofHBRST that are annihilated by
each ofG, G†, F , F†. Thus the only states satisfying (4.32) are those satisfying
the constraints of the theory.

Further, the states for which (4.18) hold satisfy both the conditions (4.32) and
infact, are the only states satisfying both of these conditions because in view of
(4.21) one cannot have simultaneouslyc, ∂+c andc̄, ∂+c̄, applied to|ψ〉 to give
zero. Thus the only states satisfying (4.32) are those that satisfy the constraints of
the theory and they belong to the set of BRST-invariant and anti-BRST-invariant
states.

Alternatively, one can understand the above point in terms of fermionic an-
nihilation and creation operators as follows. The conditionQ|ψ〉 = 0 implies that
the set of states annihilated byQ contains not only the states for which (4.18) hold
but also additional states for which (4.28) hold. HoweverQ̄|ψ〉 = 0 guarantees
that the set of states annihilated bȳQ contains only the states for which (4.18)
hold, simply becauseG†|ψ〉 6= 0 andF†|ψ〉 6= 0. Thus in this alternative way also
we see that the states satisfyingQ|ψ〉 = Q̄|ψ〉 = 0 (i.e., satisfying (4.32)) are
only those states that satisfy the constraints of the theory and also that these states
belong to the set of BRST-invariant and anti-BRST-invariant states.
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5. SUMMARY AND DISCUSSIONS

In this work we have studied the NLSM in the FF, i.e., on the hyperplanes
x+ = (x0+ x1)/

√
2= constant. The theory in the IF has been studied before rather

widely (Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b) and it is well known to be a GNI theory possessing a set of four second-
class constraints (Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and
Rajaraman, 1990a,b).

The FF theory on the other hand as studied in the present case is seen to
possess a set of three first-class constraints and consequently it describes a GI
theory. Also for the FF theory studied in the present work there does not exist
any problem with respect to operator ordering as one encounters in the case of the
IF theory (Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b).
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